Estimating space-time covariance functions: a composite likelihood approach

نویسندگان

  • M. BEVILACQUA
  • C. GAETAN
  • J. MATEU
  • E. PORCU
چکیده

In the last years there has been a growing interest in the construction space-time covariance functions. However, effective estimation methods for these models are somehow unexplored. In this paper we propose a composite likelihood approach and a weighted variant for the space-time estimation problem. The proposed method can be a valid compromise between the computational burdens, induced by the use of a maximum likelihood approach, and the loss of efficiency induced by using a weighted least squares procedure. An identification criterion based on the composite likelihood is also introduced. The effectiveness of the proposed procedure is illustrated through an extensive simulation experiment, and by reanalising a data set on Irish wind speeds (Haslett and Raftery, 1989). We also address an important issue, which has been recently explored in the literature, on how to select an appropriate space-time model by accounting for the tradeoff between goodness-of-fit and model complexity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Joint composite estimating functions in spatiotemporal models

Modelling of spatiotemporal processes has received considerable attention in recent statistical research. However, owing to the high dimensionality of the data, the joint modelling of spatial and temporal processes presents a great computational challenge, in both likelihoodbased and Bayesian approaches. We propose a joint composite estimating function approach to estimating spatiotemporal cova...

متن کامل

Evolution of Covariance Functions for Gaussian Process Regression Using Genetic Programming

In this contribution we describe an approach to evolve composite covariance functions for Gaussian processes using genetic programming. A critical aspect of Gaussian processes and similar kernel-based models such as SVM is, that the covariance function should be adapted to the modeled data. Frequently, the squared exponential covariance function is used as a default. However, this can lead to a...

متن کامل

International Workshop on Spatio - Temporal Statistics Imperial College London 18 – 20 April 2016

s of Talks A Flexible Class of Non-separable Cross-Covariance Functions for Multivariate Space-Time Data Denis Allard L’Institut national de la recherche agronomique Multivariate space-time data are increasingly available in various scientific disciplines. When analyzing these data, one of the key issues is to describe the multivariate space-time dependences. Under the Gaussian framework, one n...

متن کامل

Title of Dissertation : Nonparametric Quasi - likelihood in Longitudinal Data

Title of Dissertation: Nonparametric Quasi-likelihood in Longitudinal Data Analysis Xiaoping Jiang, Doctor of Philosophy, 2004 Dissertation directed by: Professor Paul J. Smith Statistics Program Department of Mathematics This dissertation proposes a nonparametric quasi-likelihood approach to estimate regression coefficients in the class of generalized linear regression models for longitudinal ...

متن کامل

A geometric approach to maximum likelihood estimation of the functional principal components from sparse longitudinal data

In this paper, we consider the problem of estimating the eigenvalues and eigenfunctions of the covariance kernel (i.e., the functional principal components) from sparse and irregularly observed longitudinal data. We approach this problem through a maximum likelihood method assuming that the covariance kernel is smooth and finite dimensional. We exploit the smoothness of the eigenfunctions to re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007